
S. Ingram

Agile Testing Technologies
Librairies, and Frameworks V3

1

Dont ask your boss…

Today’s plan
• Small exercice/example on JEST and TDD.
• (Pre-requisite) Test Doubles: Mock, stub, and fake description.
• Mocha for (Unit, Integration, BDD) Testing:

– Comparison with other JS frameworks for unit and integration tests.
– Mocha Description.
– Mocha BDD-style assertion styles using Chai.
– Mocha spying, stubbing, and mocking using Sinon.js.

• Cucumber for BDD Testing:
– Cucumber Description.
– Mocha vs Cucumber.
– Cucumber feature description with Gherkin.
– Cucumber test implementation with Cucumber.js.

• Cypress for Automated UI Testing:
– Cypress vs Selenium.
– Cypress features and bundled tools.
– Practice with Cypress UI testing.

Small exercice/example on the TDD approach
and JEST unit testing library:

•

• In a previous course edition, I asked students to
write a function and its test (or should I say tests!)
that can classify the outcome of a PCR-like test
based on reference values.
I am sharing the exercice and two solutions
submitted, so we can evaluate them together.

Prof. S. Ingram, P. Kuonen

• Write a function supposed to return the outputs below
depending on the input provided.

• Use a TDD approach, and document all the different steps
followed.

5

Input Output
1 PC

0.2 D
0.7 PC
4 C
2 C

0.5 PC

This is the exercice

Is this solution submitted correct?

Input Output

1 PC

0.2 D

0.7 PC

4 C

2 C

0.5 PC

Is this one correct?
1) Does the function comply with “business” requirements? (Input/output)
2) Does it use TDD?

Input Output

1 PC

0.2 D

0.7 PC

4 C

2 C

0.5 PC

Is this one correct?

Agile Testing Quadrant

And one more Testing Pyramid
(The best among those shared so far, in my view, can you guess why?)

Mocha (with Chai, Sinon), Jest

Mocha (with Chai, Sinon), Jest

Cucumber, Mocha

Automation with Selenium, Cypress*

* Since Cypress integrates Chai and Sinon, it can also be used in lower pyramid sections.

Test Doubles with Sinon.js

Test Doubles
Test Doubles are similar to actor ‘stunts’ in movies.

https://www.vulyplay.com/img/blog/trampoline-stunts-movies-pyrotechnics.jpg

http://www.vulyplay.com/img/blog/trampoline-stunts-movies-pyrotechnics.jpg

Test Doubles
• The term was introduced by Meszaros in his ‘xUnit Test

Patterns’ book.
• There are 3 main types of Test Doubles: Stubs, Fakes,

Mocks.

Stubs
•
•

Stubs contain no logic.
A stub simply returns the values it is asked to return,
allowing a test to reach a certain step.

Stubs

https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da

Suppose you want to write a unit test a function that computes average grades, you want to test
it independently from what it depends on (it is not a integration test!), in an “isolated” way from
eventual external errors. so you can give it the data it expects to work properly (here the grades)
instead of retrieving them from the real database.

Fakes
• Compared to stubs, fakes are closer in terms of behaviour to

the real objects they replace.
• Usually the person who created the real object, writes its fake.
• Example: replace a database call with a call for an-memory

data structure.

Fakes

https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da

Mocks
•
•
•

Mocks are used to test the interaction between objects.
Mocks are useful for functions returning no values.

The test fails if the mocks object is not called as expected.

Mocks

https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da

Stub? Mock?
public interface MailService {

public void send (Message msg);
}
public class MailServiceStub implements
MailService {

private List<Message> messages = new
ArrayList<Message>();

msg) {public void send (Message
messages.add(msg);

}
public int numberSent() {

return messages.size();
}

}
// We can then use state verification on the stub like this.
class OrderStateTester...

public void testOrderSendsMailIfUnfilled() {
Order order = new Order(TALISKER, 51);
MailServiceStub mailer = new

MailServiceStub();
order.setMailer(mailer);
order.fill(warehouse);
assertEquals(1, mailer.numberSent());

}
•

Class OrderInteractionTester...
public void

testOrderSendsMailIfUnfilled() {
Order order = new Order(TALISKER, 51);
Mock warehouse =

mock(Warehouse.class);
Mock mailer = mock(MailService.class);
order.setMailer((MailService)

mailer.proxy());

mailer.expects(once()).method("send");

warehouse.expects(once()).method("hasInven
tory")

.withAnyArguments()

.will(returnValue(false));

order.fill((Warehouse)
warehouse.proxy());

}
}

https://martinfowler.com/articles/mocksArentStubs.html

Stubs and Mock side by side
public interface MailService {
public void send (Message msg);

}
public class MailServiceStub implements
MailService {
private List<Message> messages = new

ArrayList<Message>();
public void send (Message msg) {
messages.add(msg);

}
public int numberSent() {
return messages.size();

}
}
We can then use state verification on the stub like this.
class OrderStateTester...
public void testOrderSendsMailIfUnfilled() {
Order order = new Order(TALISKER, 51);
MailServiceStub mailer = new

MailServiceStub();
order.setMailer(mailer);
order.fill(warehouse);
assertEquals(1, mailer.numberSent());

}
•

lass OrderInteractionTester...

public void testOrderSendsMailIfUnfilled() {
Order order = new Order(TALISKER, 51);
Mock warehouse = mock(Warehouse.class);
Mock mailer = mock(MailService.class);
order.setMailer((MailService)

mailer.proxy());

mailer.expects(once()).method("send");

warehouse.expects(once()).method("hasInventory"

)
.withAnyArguments()
.will(returnValue(false));

order.fill((Warehouse) warehouse.proxy());
}

}

https://martinfowler.com/articles/mocksArentStubs.html

Mocks use method callsStubs rely on returned values

Today’s plan
• Test Doubles: Mock, stub, and fake description.
• Mocha for Unit, Integration, BDD Testing:

– Comparison with other JS frameworks for unit and integration tests.
– Mocha Description.
– Mocha BDD-style assertion styles using Chai.
– Mocha spying, stubbing, and mocking using Sinon.js.

• Cucumber for BDD Testing:
– Cucumber Description.
– Mocha vs Cucumber.
– Cucumber feature description with Gherkin.
– Cucumber test implementation with Cucumber.js.

• Cypress for Automated UI Testing:
– Cypress vs Selenium.
– Cypress features and bundled tools.
– Practice with Cypress UI testing.

Unit and Integration tests with Mocha

https://stackshare.io/stackups/jasmine-vs-jest-vs-mocha

: Github Forks : StackOverflow Questions

Libraries and Frameworks for Unit and Integration Tests

Libraries and frameworks for Unit and Integration Tests

- Created in ‘2008’

- Batteries included’:
Complete Testing
framework

- Created in 2014, has
drastically evolved since
then.

- Easy to set up: zero
configuration.

- Runs unrelated tests in
parallel (unlike Jasmin
and Mocha).

- Offers Snapshots.

- Created in 2011
- No built-in assertions

and test doubles.
- Highly flexible, suitable

for large projects.

Jasmin

Testing with Mocha
•
•
•
•
•

Javascript testing framework.
BDD-style syntax.
Used for unit, integration, and acceptance tests.
Simplifies testing asynchronous code.
Unlike Jasmin, it does not include built-in assertions
or stubbing.

– Chai is used for assertions.
– Sinon.js is used for stubbing and spying.

which quadrant?

Mocha BDD-style Hooks
describe(‘hooks demo’, function() {

});

after(function() {
// runs after all tests in this block

});

beforeEach(‘some description’, function()

{

});

// test cases

before(function() {
// runs before all tests in this block

// runs before each test in this block
// optional hook description to better understand errors

});
afterEach(function() {
// runs after each test in this block

});
Pay attention to the order of execution of hooks

Assertions in Mocha using Chai
• Chai is an Assertion Framework used with Mocha,

(and Cypress).
• Chai offers human-readable syntax for assertions

and error messages.

Assertions in Mocha using Chai
• Chai is an Assertion Framework used with Mocha,

(and Cypress).
• Chai offers human-readable syntax for assertions

and error messages.

http://frontend.turing.io/lessons/module-2/test-driven-development-with-webpack.html

http://frontend.turing.io/lessons/module-2/test-driven-development-with-webpack.html

Mocha Test Doubles using Sinon.js

• Sinon.js is a Javascript library that can be used with
unit testing framework.

• Fakes, stubs, spies, and mocks can be generated
using Sinon.js.

https://sinonjs.org/releases/v7.3.2/mocks/

https://sinonjs.org/releases/v7.3.2/fakes/

https://sinonjs.org/releases/v7.3.2/spies/

https://sinonjs.org/releases/v7.3.2/stubs/

Testing Doubles with Sinon.js
• Fakes once created, are immutable.
• Spies watch functions, and record the arguments those

functions receive, their return value and potential
exceptions thrown from calling those functions.

Testing Doubles with Sinon.js
• Fakes, once created, are immutable.
• Spies watch functions, and record the arguments those

functions receive, their return value and potential
exceptions thrown from calling those functions.

• Stubs implement all the Spy APIs and adds APIs to
change behaviour.

• Mock “expectations” implement both Spy and Stub
APIs.

“??????????” :
var message

function(){
= 'an example message';

var stub = sinon.stub().throws();
var spy1 = sinon.spy();
var spy2 = sinon.spy();

PubSub.subscribe(message,
PubSub.subscribe(message,
PubSub.subscribe(message,

stub);
spy1);
spy2);

PubSub.publishSync(message, undefined);

assert(spy1.called);
assert(spy2.called);
assert(stub.calledBefore(spy1))
;

}

Example using spies and stubs with Sinon.js

What does this test do?

var stub = sinon.stub().throws();
var spy1 = sinon.spy();
var spy2 = sinon.spy();

PubSub.subscribe(message,
PubSub.subscribe(message,
PubSub.subscribe(message,

stub);
spy1);
spy2);

PubSub.publishSync(message, undefined);

assert(spy1.called);
assert(spy2.called);
assert(stub.calledBefore(spy1));

}

"test should call all subscribers, even if there are exceptions" : function(){
var message = 'an example message';

Why is a stub used here and not a spy?

Example using spies and stubs with Sinon.js

Anything you would have done otherwise?

The answer to
the question of what the

function does

Example using Mocks with Sinon.js

"test should call all subscribers even
{

with exceptions": function ()

var myAPI = { method: function () {} };
var
var

spy
mock

= sinon.spy();
= sinon.mock(myAPI);

mock.expects(“method").once().throws(); // throw an exception
PubSub.subscribe("message",
PubSub.subscribe("message",

myAPI.method);
spy);

undefined);PubSub.publishSync("message",
mock.verify();
assert(spy.calledOnce);

}

https://github.com/cypress-io/sinon/blob/master/docs/_releases/v2.4.0/mocks.md

Another example using Mocha with
asynchronous code !

Any problem with this example?

NOT FOR THE EXAM

A “better” example with Mocha

Add a callback
function (here “done”)

AFTER the last
assertion so Mocha

waits for the function to
be called before

executing the test

More on handling asynchronous code: https://mochajs.org/#asynchronous-code

NOT FOR THE EXAM

Async/Await can also be used for asynchronous tests

beforeEach(async function() {

await db.clear();

await db.save([tobi, loki, jane]);

});

describe('#find()', function() {

it('responds with matching records', async function() {

const users = await db.find({type: 'User'});

users.should.have.length(3);

});

});

More on handling asynchronous code: https://mochajs.org/#asynchronous-code

NOT FOR THE EXAM

Today’s plan
• Test Doubles: Mock, stub, and fake description.
• (Unit, Integration, BDD) Testing with Mocha:

– Comparison with other JS frameworks for unit and integration tests.
– Mocha Description.
– Mocha BDD-style assertion styles using Chai.
– Mocha spying, stubbing, and mocking using Sinon.js.

• BDD Testing with Cucumber:
– Cucumber Description.
– Mocha vs Cucumber.
– Cucumber feature description with Gherkin.
– Cucumber test implementation with Cucumber.js.

• Automated UI Testing with Cypress:
– Cypress vs Selenium.
– Cypress features and bundled tools.
– Practice with Cypress UI testing.

BDD Acceptance Tests with Cucumber

Cucumber
•
•
•

BDD Framework for acceptance tests,
Adapted for non programmers.
The expected behaviour of tested features is
described in a text file using the Gherkin syntax.
Tests are then implemented in different
programming languages (Java, Javascript, Ruby).
Cucumber integrates well with browser drivers for
UI automation (such as Selenium).

•

•

Which Quadrant?

Cucumber Feature Description

Feature files are written in Gherkin and focus on What, and not How.

Feature: Users must be able to search for content using “the
Search” button.
Scenario: Search for a term.
Given Given I have entered “watir” into the query.
When I click “Search"

Then I should see some result.
https://www.tutorialspoint.com/cucumber/cucumber_ruby_testing.htm

http://www.tutorialspoint.com/cucumber/cucumber_ruby_testing.htm

Example of a Cucumber Test implemented with the Ruby
programming language

require
require
require

"rubygems"
"test/unit"
"watir-webdriver"

class GoogleSearch < Test::Unit::TestCase
def setup
@browser ||= Watir::Browser.new :firefox
end

def teardown
@browser.close
end

assert

def test_search
@browser.goto "google.com"
@browser.text_field(:name => "q").set "watir"
@browser.button.click
@browser.div(:id => "resultStats").wait_until_present
@browser.title == "watir - Google Search"
end
end

https://www.tutorialspoint.com/cucumber/cucumber_ruby_testing.htm

browser automation

Is the example of
BDD test

complete?

http://www.tutorialspoint.com/cucumber/cucumber_ruby_testing.htm

Let’s write a test for a simple addition feature
using the Cucumber BDD framework

1) We need to provide the feature description and scenario

$ mkdir cucumber_example
$ cd cucumber_example
$ mkdir features
$ vim addition.feature

3) Define test steps for the addition feature test

$ mkdir step_definitions
$ cd step_definitions
$ vim definition1.js

const { Given, When, Then } =
require('cucumber');
const assert = require('assert')

//// Your step definitions /////
Given(/^I have number (\d+) in
calculator$/, function (num) {

this.setTo(num);
});

When(/^I entered number (\d+)$/,
function (num) {

this.incrementBy(num);
});

Then(/^I should see result (\d+)$/,
function (result) {

assert.equal(this.variable,
parseInt(result));
});

4) Implement and specify the code to test

$ cd features
$ mkdir support
$ cd support
$ vim env.js

const { setWorldConstructor} = require('cucumber')

class CustomWorld {
constructor() {
this.variable = 0
}

setTo(number) {
this.variable = number

}

incrementBy(number) {
this.variable += number

}
}

setWorldConstructor(CustomWorld)

env.js

In some cases, it is useful to define its
own CustomWorld, including test
instance properties and methods
available to steps and hooks (afterEach,
beforeEach) cf. ‘Custom World’ in

https://github.com/cucumber/cucumber-
js/blob/main/docs/support_files/world.md

All Side by Side

const { setWorldConstructor } = require('cucumber')

class CustomWorld {
constructor() {
this.variable = 0
}

setTo(number) {
this.variable = number

}

incrementBy(number) {
this.variable += number

}
}

setWorldConstructor(CustomWorld)

Tested module

The corresponding test
Feature Description File (Gherkin): const { Given, When, Then } =

require('cucumber');
const assert = require('assert')

Regular expressions
//// Your step definitions /////
Given(/^I have number (\d+) in
calculator$/, function (num) {

this.setTo(num);
});

When(/^I entered number (\d+)$/, function
(num) {

this.incrementBy(num);
});

Then(/^I should see result (\d+)$/,
function (result) {

assert.equal(this.variable,
parseInt(result));
});

Execute test
$ npm test

Another Simple Feature Description

Feature: Bing Search
This is a sample feature to test search engine

Scenario: Search something from bing
Given browse to web site “https://www.bing.com"
When input keyword "Mars"
Then click Search button
And search result should contain "NASA"

https://www.codementor.io/cuketest/one-quick-way-to-create-your-cucumber-js-test-script-iq5kxwy8y

http://www.bing.com/
http://www.codementor.io/cuketest/one-quick-way-to-create-your-cucumber-js-test-script-iq5kxwy8y

Implement the search feature

const { Given, When, Then } = require('cucumber');
const assert = require('assert');
const { driver } = require('../support/web_driver');

Given(/^browse to web site "([^"]*)"$/, async function(url) {
return driver.get(url);

});

When(/^input keyword "([^"]*)"$/, async function (keyword) {
return driver.findElement({ id: "sb_form_q" }).sendKeys(keyword);

});

Then(/^click Search button$/, async
return driver.findElement({ id:

});

function () {
"sb_form_go" }).click();

Then(/^search result should contain "([^"]*)"$/, async function (keyword) {
await driver.sleep(1000);

let result = await driver.findElement({ id: "b_results" }).getText();
return assert.ok(result.includes(keyword));

});

MochaJS vs Cucumber

MochaJS vs Cucumber
• Both are suited for BDD testing.

MochaJS vs Cucumber
•
•

Both are suited for BDD testing.
Cucumber is easier to integration with Web drivers
(e.g. Cucumber with Selenium).

MochaJS vs Cucumber
•
•

Both are suited for BDD testing.
Cucumber is easier to integration with Web drivers
(e.g. Cucumber with Selenium).
Mocha is a Javascript framework, Cucumber’s
syntax can be implemented with different languages
(e.g. Ruby, Javascript).

•

•

MochaJS vs Cucumber
•
•

Both are suited for BDD testing.
Cucumber is easier to integrate with Web drivers
(e.g. Cucumber with Selenium).
Mocha is a Javascript framework, Cucumber’s
syntax can be implemented with different languages
(e.g. Ruby, Javascript).

•

MochaJS vs Cucumber
•
•
•

Both are suited for BDD testing.
Mocha integration with browser drivers is less tight.
Mocha is a Javascript framework, Cucumber can
be implemented with different languages.
Unlike Mocha, Cucumber separates feature files and
the code written to test feature acceptance.
Cucumber is more human-readable, more adapted
to non-programmers.

•

•

Today’s plan
• Test Doubles: Mock, stub, and fake description.
• (Unit, Integration, BDD) Testing with Mocha:

– Comparison with other JS frameworks for unit and integration tests.
– Mocha Description.
– Mocha BDD-style assertion styles using Chai.
– Mocha spying, stubbing, and mocking using Sinon.js.

• BDD Testing with Cucumber:
– Cucumber Description.
– Mocha vs Cucumber.
– Cucumber feature description with Gherkin.
– Cucumber test implementation with Cucumber.js.

• Automated UI Testing with Cypress:
– Cypress vs Selenium.
– Cypress features and bundled tools.
– Practice with Cypress UI testing.

Automated UI Testing with Cypress

And what does UAT stand for?

Selenium

https://www.lambdatest.com/blog/test-automation-using-pytest-and-selenium-webdriver/

HTTP

‣ Selenium is UI testing library that requires Drivers to run.

‣ Communication is done over HTTP even for local tests.

http://www.lambdatest.com/blog/test-automation-using-pytest-and-selenium-webdriver/

Cypress

•

• Cypress is a “fast, easy, and reliable” Javascript
Testing Framework for automated browser UI
testing.
Cypress adopts Mocha’s BDD syntax for unit and
integration tests.

Unlike Selenium, Cypress
Does not rely on a Web Driver, nor a network communication,
it runs directly on the browser with its proper mechanism to
manipulate the DOM.
Is a complete testing framework:

• is built on top of Mocha (Mocha is built-in).
• has bundled tools including Chai for assertions, Sinon.js for

stubbing and spying.

Easy to setup.
Cypress works for Firefox, Chrome-family browsers (including Edge
and Electron) and more recently WebKit (Safari). https://
docs.cypress.io/guides/guides/cross-browser-testing

Except for Electron, cypress requires installation (locally or in CI environment).

Cypress Test runner
Test Steps Tested Application Display

More on Cypress Features
•
•

Cypress supports all JQuery selectors.
Includes a travel-back-in-time option, easing
debugging.
Like Jest, Cypress takes DOM snapshots, prior to
each test step. (on the bottom to facilitate
debugging).

•

Try it Yourself (it’s very easy!)
1.Install Cypress with npm: https://docs.cypress.io/guides/getting-started/

installing-cypress.html

2.Write your test(s): https://docs.cypress.io/guides/getting-started/writing-
your-first-test.html#Console-output

3.Use Cypress Test Runner for debugging: https://docs.cypress.io/guides/
getting-started/testing-your-app.html

4. Execute the tests from the CLI.

5. Remember to create and integrate a cypress test in your CI/CD pipeline

References (Optional Readings)

66

•
•

•
•

•
•

•

Scenario Outlines with Cucumber (Scenario Templates): https://cucumber.io/docs/gherkin/reference/#scenario-outline

Asynchronous code in Mocha: https://mochajs.org/#asynchronous-code

Anti-pattern Feature-Coupled Step Definition with Cucumber: https://cucumber.io/docs/guides/anti-patterns/#feature-coupled-step-definitions

Sinon.js to create test spies, mocks, and stubs: https://sinonjs.org/

xUnit Test Patterns Book: http://xunitpatterns.com/Test%20Double%20Patterns.html

Test Doubles: https://testing.googleblog.com/2013/07/testing-on-toilet-know-your-test-doubles.html

Mocha vs Jest vs Jasmin (Picking a testing framework): https://proquest.tech.safaribooksonline.de/book/programming/javascript/
9781788477321

Learning BDD with Javascript (Cucumber.js, Gherkin): https://proquest.tech.safaribooksonline.de/book/programming/javascript/
9781784392642

Example of Cucumber usage with Ruby: https://www.agiratech.com/web-automation-testing-with-ruby-cucumber-watir/

Building Enterprise Javascript Applications (Writing Unit/Integration Tests): https://proquest.tech.safaribooksonline.de/
9781788477321/38b85b06_d091_4751_a2ac_32ca0f98f26b_xhtml#X2ludGVybmFsX0h0bWxWaWV3P3htbGlkPTk3ODE3ODg0NzczMjElMk
YzOGI4NWIwNl9kMDkxXzQ3NTFfYTJhY18zMmNhMGY5OGYyNmJfeGh0bWwmcXVlcnk9KChCREQlMjByZWFjdCkp

Mocha: https://mochajs.org

Testing with Chai and Mocha: https://proquest.tech.safaribooksonline.de/book/operating-systems-and-server-administration/9781788835770/
the-need-for-testing-lambda-function/204792ad_01b4_4613_87b0_6ca12fcb30c7_xhtml?

Jest BDD Unit Test from Facebook (React Building Modern Web Applications): https://proquest.tech.safaribooksonline.de/book/web-
development/9781786462268/7dot-not-reinventing-the-wheel-tools-for-functional-reactive-programming/ch07s06_html

Selenium: https://proquest.tech.safaribooksonline.de/book/software-engineering-and-development/software-testing/9781788473576

Selenium vs Cypress: https://crossbrowsertesting.com/blog/test-automation/selenium-vs-cypress/

Cypress + Cucumber: https://medium.com/@itortv/how-to-integrate-cypress-and-cucumber-in-your-development-flow-in-just-a-few-
weeks-96a46ac9165a

Jquery selectors: https://www.tutorialsteacher.com/jquery/jquery-selectors.

•

•
•

•
•

•

•
•

•

•

http://xunitpatterns.com/Test%20Double%20Patterns.html
http://www.agiratech.com/web-automation-testing-with-ruby-cucumber-watir/
https://medium.com/%40itortv/how-to-integrate-cypress-and-cucumber-in-your-development-flow-in-just-a-few-
http://www.tutorialsteacher.com/jquery/jquery-selectors

